
PRINCIPAL ANGLES BETWEEN SUBSPACES AND REDUCED
ORDER MODELLING ACCURACY IN SCALABLE ROBUST

OPTIMIZATION
————————————

AN EESI2 CONTRIBUTION TO THE EMWG WORKSHOP
————————————

BIJAN MOHAMMADI
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Abstract. The paper considers robust parametric optimization problems using multi-
point formulations and addresses the issue of the approximation of the gradient of the
functional by reduced order models. The question of interest is the impact of such ap-
proximations on the search subspace in the multi-point optimization problem. The math-
ematical concept used to evaluate these approximations is the principal angles between
subspaces and practical ways to evaluate these are provided. An additional indicator is
provided when a descent minimization algorithm is used. The approach appears also to
be an interesting tool for uncertainty quantification in the presence of models of increas-
ing complexity. We are especially interested by the choices which bring into light efficient
parallelism. The application of these concepts is illustrated in the design of the shape of
an aircraft robust over a range of transverse winds.

1. EMWG/EESI2 context

The following considerations motivate this work from the point of view of calculation
complexity:

- today the solution of the state equations of interest (e.g. from fluid mechanics or sismic)
already mobilizes petaflopic calculation facilities available. This is called the solution of
the direct problem.

- the best calculation complexity one might think of for a robust parameteric optimiza-
tion is when its cost is made comparable to a mono-point situation.

- exascale supercomputers open new horizons for large simulations, but one should still
think of calculation efficiency, because even those will not permit the solution of robust
design problems where the direct state requires a petaflopic computer.

We will show here that not only brute force (e.g. by extensive sampling) is not an
answer, but it brings to these robust design problems misleading informations with noise
and numerical artifacts encapsulated.

This work is an example of how to find new formulations and algorithms in order to
take advantage of the next generation of supercomputers in order to keep the calculation
complexity optimal (i.e. of a mono-point design).

2. Introduction

Reduced order models are widely used in both simulation and design. These can be built,
for instance, by assimilation of high fidelity data or experimental results by a parametric
model. Once the model built it can be used in an optimization procedure providing cheap
estimation of the functional and its sensitivity with respect to the model parameters. It
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can also be locally used in trust region approaches where the reduced order model needs
to be dynamically enriched. Reduced order modelling receives different denominations
following the field of research it is issued from: learning in neural networks, fitting with
least squares in experimental plans or higher degrees polynomials, reduced-order modeling
with proper orthogonal decomposition, etc. [1, 2, 3].

The performance of a system designed for given functioning conditions often seriously
degrades when these conditions are modified. Typical situations of interest involve a few
(typically one or two) parameters describing the functioning of the system. Multi-point
optimization is widely used to address robustness issues in engineering and we showed
[17, 12] how to use such formulation to address the robustness issue when a few functioning
parameters are involved. In particular, we showed how to introduce in this formulation
what we would like for the outcome of the design through a ’target-based’ weighting in the
functional. We also discussed optimal sampling of the functioning parameters intervals
and quantitative confidence levels on the quality of our search direction through Gram-
Schmidt orthonormalization of the multi-point gradients. This naturally brought into light
the question of the sampling size which needs to be monitored to maintain the calculation
complexity low. The aim was to avoid the worst-case theoretical limitation indicating
that the sampling size should be larger by one the size of the control space [19, 17, 18].
We showed that this is only necessary if all the associated gradients (i.e. evaluated at the
sampling points) are linearly independent which is never the case in optimizations involving
a state equation. Hence, we showed, again through Gram-Schmidt procedure, that large
dimensional parametric optimization problems can be treated with very small sampling of
the functioning parameters range with marginal losses on the gradient informations.

However, one often uses approximation in the definition of the gradients. And this is
the starting point of this paper. One would like to analyze the impact of these using
reduced order models on the search space defined by the gradients of the functional at the
different sampling points of the functioning parameters. The mathematical tool we use
for this analysis is the principal angles between subspaces. Reduced order modelling also
includes situations where lower accuracy and modelling complexity are accounted for in
the linearization step than for the direct simulation chain used for the definition of the
functional. This is often the situation where an approximate simulation chain is considered
for linearization, droping or approximating some of the ingredients in the direct chain.

3. Robust parametric optimization

4. A multi-point descent algorithm

We consider the following iterative descent algorithm for our constrained minimization
problem involving a direct simulation chain linking the parameters (x, α) to the state U
solution of a state equation F (U(q(x, α)) = 0 and to a functional j is:



Given x0, 0 < ρ, 0 < η << 1, Im, pmax, 0 < ε << 1,

optimization iterations p = 1, ..., pmax

-m parallel state equation solutions F (U(q(xp), αl)) = 0, αl ∈ Im ,

-m parallel evaluations of j(xp, αl), αl ∈ Im ,

-m parallel solutions of the adjoint state V equation:
V tFU (U(q(xp), αl)) = jt

U , αl ∈ Im,
-m parallel evaluations of ∇xj(xp, αl) = jx + (V tFx)t, αl ∈ Im ,

-define d the descent direction, d = ∇xµ− < ∇xµ,∇xσ > ∇xσ + η∇xσ,

-control parameter variation, xp+1 = xp − ρd,

Stop if ‖d‖ ≤ ε,
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where a = a/‖a‖ is the normalized vector a and

(1) ∇xµ =
1
Ω

∑
αl∈Im

ωl∇xj(x, αl),

(2) ∇xσ =
∑

αl∈Im

< ∇αj(x, αl),∇αxj(x, αl) > .

∇xαj(x, αl) is obtained from ∇xj(x, αl) by finite differences on Im, component by com-
ponent, following what has been done for ∇αj. The definition of the descent direction
permits to make sure that both µ and σ decrease for small descent steps. Indeed, a first
order development in x gives:

σ(xp+1)− σ(xp) = ‖∇xσ‖ ∇xσ.(xp+1 − xp) = −ρη‖∇xσ‖ ≤ 0,

and we have

µ(xp+1)− µ(xp) = ‖∇xµ‖ ∇xµ.(xp+1 − xp) = −ρ‖∇xµ‖ (1− ζ2 + ηζ),

where ζ =< ∇xµ,∇xσ >. Therefore, µ is also decreasing as 1 − ζ2 + ηζ ≥ 0 for |ζ| ≤ 1
and 0 < η << 1 as chosen in the algorithm.

Parallelism: Despite the natural presence of parallelism in this algorithm in the m
independent evaluations of the state, functional and its gradient, computational complexity
remains an issue. Possible solutions for the reduction of the sampling size have been
presented in [12] together with the use of incomplete sensitivity concept in the evaluation
of the gradients. This latter permits to avoid the solution of the m adjoint equations in
the algorithm. This is particularly suitable when using black-box state equation solvers
not providing the adjoint of the state variables.

Beyond individual gradient accuracy (i.e. at each of the sampling point), what is im-
portant in these multi-point problems is the global search space defined by the ensemble
of the gradient vectors. This means that one might tolerate higher error levels in each of
the gradient defined at the different sampling point than for a mono-point optimization
situation as what is important is for the global search space to remain nearly unchanged.
An interesting mathematical concept which permits to measure the deviation between two
subspaces is the principal angles between subspaces.

5. Angles between subspaces

6. Definition of the subspaces

7. Evolution of the principal angles during optimization

8. Sensitivity analysis

8.1. Examples of reduced order models.

8.1.1. Model reduction on the continuous level.

8.1.2. Complexity reduction on the discrete level.

8.1.3. Evaluation of an incremental modelling process.

8.2. Defining the descent direction.
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9. Full aircraft shape optimization
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